Honeywell

S0 pulse counter with Modbus interface EEM-CONVERTER
 =

The S0-Modbus coupler module is a device for the collection of S 0 pulses. With this module the consumption data of any measurement device with a S0 output becomes bus capable and can be accessed by a master of Modbus.

Main features

- Up to 99 S0-Modbus Modules on the same bus
- 4 S0 pulse inputs (S01+... S04+) per S0-Modbus Module
- Up to 396 S0 devices on the same Modbus
- The inputs comply with the S0 standard 62053-31
- Integrated RS-485 termination resistor
- LED for bus activity indication

Order number
EEM-CONVERT

Dimensioned drawings

Display elements / settings

S0 inputs

■ Comply with S0 standard 62053-31
■ Counts pulses as ' 0 ' when $\mathrm{R}<800 \Omega$
■ Counts pulses as ' 1 ' when $R>1 \mathrm{M} \Omega$
■ Voltage max. (GND-S0) 13 VDC
■ Current max. (with 0Ω) 6 mA
■ Pulses low
■ Pulses high min .30 ms

■ Frequency min. 30 ms max. 17 Hz

Changing the Modbus-Address

■ The Modbus address can be set with the rotary switches.
■ The address is set max. 10 s as soon as the rotary switches no longer were rotated.

Note: Modbus don't allow a device address '0'. Nevertheless if it is set, the EEM-CONVERT module isn't communicating via the bus and the the two LEDs are flashing each with 1 Hz , however the S 0 pulses are counted

Wirings Diagram

Note: If the $\mathbf{S 0}$-Modbus module is used in the Modbus as last device, then the sliding switch «RS-485 Terminate» need to be in the position «On».

Technical data Modbus

Protocol	Modbus RTU according to IDA specification
Bus system	
Transmission rate (bps)	RS-485 serial line The transmission baudrate is automatically detected
Transmission mode	Even parity: 8 data bits, 1 stop bit Odd parity: 8 data bits, 1 stop bit No parity: 8 data bits, 2 stop bits
The transmission mode is automatically detected	

■ Default baudrate: 19'200 BPS, 8 data bits, 1 stop bit, even parity

- The communication is ready 10 s after the power on

■ For a description of the used registers please look at the register page

Data transmission

■ Only «Read Holding Registers [03]/ Write Multiple Registers [16]» instructions are recognized.

- Up to 20 registers can be read and two registers can be written at a time.
- The device supports broadcast messages.

■ In accordance with the modbus protocol, a register R is numbered as $R-1$ when transmitted.

- The device has a voltage monitoring system. In case of voltage loss, registers are stored in EEPROM (transmission rate, etc.)

Exception Responses

- ILLEGAL FUNCTION [01]: The function code is not implemented.
- ILLEGAL DATA ADDRESS [02]: The address of some requested registers is out of range or more than 20 registers have been requested.
■ ILLEGAL DATA VALUE [03]: The value in the data field is invalid for the referenced register.

Registers

For double registers ($4-5,16-17,28-29,30-31,32-33,34-35$) the high register is sent first (big_Endian).
Counters ($28-29,30-31,32-33,34-35$) can be reset by writing 0 in both registers.

R	Read	Write	Description	Unit or Value
01	X		Firmware Version	Ex: «10»=FW 1.0
02	X		Number of supported registers	will give «43»
03	X		Number of supported flags	will give «0»
04-05	X		Baudrate [BPS]	$\begin{aligned} & \text { Ex: Baudrate High }=1 \text {; Baudrate Low }=49^{\prime} 664 \\ & 1 \times 655^{\prime} 536+49^{\prime} 664=115 ' 200 \text { bps } \end{aligned}$
06			Not used	will give a «0»
07	X		Type/ASN Funktion	will give «EE»
08	X		Type/ASN Funktion	will give «M-»
09	X		Type/ASN Funktion	will give «CO»
10	X		Type/ASN Funktion	will give «NV》
11	X		Type/ASN Funktion	will give «ER»
12			Not used	will give a «0»
13			Not used	will give a «0»
14			Not used	will give a «0»
15	X		HW Version	Ex: «10» = HW 1.0
16-17	X		Serial Number	Unique 32 bits serial number
18			Not used	will give a «0»
19			Not used	will give a «0»
20			Not used	will give a «0»
21			Not used	will give a «0»
22	X		Status/Protect	«0» = no Problem \| «1> = Problem with last communication request
23	X		Timeout	will give «Timeout [ms]»
24	X		Modbus Address	1-99
25			Not used	will give a «0»
26			Not used	will give a «0»
27			Not used	will give a «0»
28-29	X	X	Counter S01	Ex: Counter S01 High = 13. Counter S01 Low = 60'383; $13 \times 65^{\prime} 536+$ 60'383 = 912'351 \| Counter S01: 912'351/2000 = 456.2 kWh
30-31	X	X	Counter 502	Ex: Counter S02 High = 13. Counter S02 Low = 60'383; $13 \times 65^{\prime} 536+$ 60'383 = 912'351 \| Counter S02: 912'351/2000 = 456.2 kWh
32-33	X	X	Counter S03	Ex: Counter S03 High = 13. Counter S03 Low = 60'383; $13 \times 65^{\prime} 536+$ 60'383 = 912'351 \| Counter S03: 912'351/2000 = 456.2 kWh
34-35	X	X	Counter S04	Ex: Counter S04 High = 13. Counter S04 Low = 60'383; $13 \times 65^{\prime} 536+$ 60'383 = 912'351 \| Counter S04: 912'351/2000 $=456.2 \mathrm{kWh}$
36	X	X	Impulses per unit for S01	Ex: $2000=2000 \mathrm{lmp} / \mathrm{kWh}$
37	X	X	Impulses per unit for SO 2	Ex: $2000=2000 \mathrm{lmp} / \mathrm{kWh}$
38	X	X	Impulses per unit for 503	Ex: $2000=2000 \mathrm{lmp} / \mathrm{kWh}$
39	X	X	Impulses per unit for $\mathrm{SO4}$	Ex: $2000=2000 \mathrm{lmp} / \mathrm{kWh}$
40	X	X	ID for S01	User defined identification number
41	X	X	ID for S02	User defined identification number
42	X	X	ID for S03	User defined identification number
43	X	X	ID for 504	User defined identification number

Honeywell

Manufactured for and on behalf of the Environmental and Combustion Controls Division of Honeywell Technologies Sàrl, Rolle, Z.A. La Pièce 16, Switzerland by its Authorized Representative:

Saia-Burgess Controls AG

Bahnhofstrasse 18
3280 Murten / Switzerland
Phone $\quad+41265803000$
Fax $\quad+41265803499$

Subject to change without notice. Printed in Switzerland

